HighF 2018

From SCECpedia
Jump to navigationJump to search

This page documents the High-F activities and decisions for the 2018 verification and validation runs for three groups: Olsen et al. (AWP), Graves (RWG) and Taborda et al. (Hercules).

Mesh generation rules and parameter constraints

Velocities

  • 1. Set Min Vs=500 m/s
  • 2. If Vs was lower than 500 m/s and adjusted, then adjust Vp with original Vp/Vs ratio (so that we don’t have the automatic Vs/Vp of 3). We may want to set a minimum value of Vp (Rob to check)
  • 3. Then set Max Vp/Vs= 3, if lower Vp to maintain the max of 3 ratio

Lame parameters (mu and lambda)

Use mu and Lambda parameters to fix Vp/Vs issues in the CVM where necessary, as part of the mesh generation. Need to make sure that patches are physical and not only to make the codes run.

  • Rob to check if raw model produces lambda of <=zero.
  • Note: lambda of zero corresponds to Vp/Vs= sqrt(2)=1.45
  • Note: typical Vp speeds are 330 m/s in air, 1450 m/s in water and about 5000 m/s in granite

Anelastic attenuation (Q)

Frequency-independent Q definition

  • Qs=100*Vs(km/s)
  • Qp=2*Qs

Upper frequency

  • 5Hz: based on 500 m/s and 20 m spacing
  • Kim and Rob have been low-pass filtering the slip function at 5 Hz
  • Ricardo and Naeem don’t filter the source


Source Models

We discussed various sources, both point source (PS) and finite-fault (FF) in the past for our verifications and validation.

PS: FF: gp.5.3.02 in document below


[NEED TO UPLOAD Notes from Rob

Site Selection

Simulation results

Results shared on March 5 2018

Description: results for the small region from November 10 2017:

Description: small region simulations for Hercules, AWP (updated since November 2017) and RWG (medium size model to avoid boundary reflexions):

Results shared on March 12 2018

Description: results for the small region from November 10 2017:

Description: small region simulations for Hercules (updated to use simulations including Q), AWP (updated since November 2017) and RWG (medium size model to avoid boundary reflexions):

Related Pages