CyberShake Preferred Rupture Directions
This page documents efforts to investigate the impact that preferred rupture directions would have on hazard as calculated by CyberShake.
Research Plan
There is some evidence that some faults have a preferred rupture direction. To investigate the impact this could have on hazard, we'll identify a handful of faults, modify the probabilities of individual rupture variations to favor those at the preferred end of the fault, and generate new hazard products with the modified probabilities. No new ground motions will need to be calculated; we'll use Study 22.12 and 24.8 ground motions.
Implementation Details
With the UCERF2 ERF used in Study 22.12 and Study 24.8, probabilities are specified at the rupture level -- that is, for a specific fault segment(s) and magnitude. We then divide the probability by the number of rupture variations to get the uniform probability of each rupture variation. For this work, we will create modified rupture variation probabilities and use these to generate a modified hazard curve.
We will add new functionality to the CyberShake-related code in OpenSHA to support this work. OpenSHA has a defined interface to return a list of probabilities for a given source ID and rupture ID. We'll specify the source ID, rupture ID, rupture variation ID, probability in a CSV file which will be passed to OpenSHA. This file will be parsed and used to populate a data structure, which will then be accessed by an implementation of the interface to determine the new probabilities. For any source ID, rupture ID, rupture variation ID combinations not in the file, we'll use the default UCERF2 probabilities. Then the new probabilities will be used to create a hazard curve.