Difference between revisions of "Broadband Platform Upcoming Release"

From SCECpedia
Jump to navigationJump to search
 
(58 intermediate revisions by 2 users not shown)
Line 1: Line 1:
[[File:Bbp.jpg|256px|thumb|right|Fig 1: Broadband Platform.]]
+
[[File:SRL_Cover_v8.png|350px|thumb|right|Fig 1: Broadband Platform.]]
  
The SCEC Broadband Platform is a software system which generates 0-100 Hz seismograms for historical and scenario earthquakes in California, Eastern North America, and Japan.
+
The SCEC Broadband Platform is a software system that can generate 0-100 Hz seismograms for historical and scenario earthquakes in California, Eastern North America, and Japan using several alternative computational methods.
  
 
== Overview ==  
 
== Overview ==  
Line 9: Line 9:
 
Users may calculate broadband seismograms for both historical earthquakes (validation events including Northridge and Loma Prieta) and user-defined earthquakes. The platform produces a variety of data products, including broadband seismograms, rupture visualizations, and several goodness-of-fit plots.  Users can install the platform on their own machine, verify that it is installed correctly, and run their own simulations on demand without requiring knowledge of any of the code involved. Users may run a validation event, supply their own simple source description, or provide a rupture description in SRF format. Users may specify their own list of stations or use a provided list. Currently the platform supports stations and events in Southern California, the Bay Area, the Mojave Desert, Eastern United States, Eastern Canada, Central and Western Japan. Users may select among various method that include rupture generation, low-frequency synthesis, high-frequency synthesis, and incorporation of site effects, with the option of running a goodness-of-fit comparison against observed or simulated seismograms.  These codes have been validated against recorded ground motions from real events.
 
Users may calculate broadband seismograms for both historical earthquakes (validation events including Northridge and Loma Prieta) and user-defined earthquakes. The platform produces a variety of data products, including broadband seismograms, rupture visualizations, and several goodness-of-fit plots.  Users can install the platform on their own machine, verify that it is installed correctly, and run their own simulations on demand without requiring knowledge of any of the code involved. Users may run a validation event, supply their own simple source description, or provide a rupture description in SRF format. Users may specify their own list of stations or use a provided list. Currently the platform supports stations and events in Southern California, the Bay Area, the Mojave Desert, Eastern United States, Eastern Canada, Central and Western Japan. Users may select among various method that include rupture generation, low-frequency synthesis, high-frequency synthesis, and incorporation of site effects, with the option of running a goodness-of-fit comparison against observed or simulated seismograms.  These codes have been validated against recorded ground motions from real events.
  
The Broadband Platform was implemented using software development best practices, including version control, user documentation, acceptance tests, and formal releases, with the aim of ease of installation and use.
+
The Broadband Platform software development is performed using modern software engineering practices, including version control, user documentation, acceptance tests, and formal releases, with the aim of accuracy, reliability, ease of installation and use.
  
 
== Current Release ==
 
== Current Release ==
  
The current official release of Broadband Platform is v15.3.0. This is a new version of the platform that includes a large number of new capabilities. It is the first major release of the Broadband Platform since version 14.3.0, released in March 2014. Details of the new features along with several bugs fixes are provided in the release notes and the "changes" section below. New, and old Broadband platform users should work with this version of the software, and we recommend current Broadband platform users migrate to this new version whenever possible.
+
The current official release of Broadband Platform is v16.5.0. This is a new version of the platform that includes several  new capabilities. It is the first major release of the Broadband Platform since version 15.3.0, released in March 2015. Details of the new features along with several bugs fixes are provided in the release notes. New Broadband Platform users should work with this version of the software. We recommend existing Broadband platform users migrate to this new version whenever possible.
  
 
== Dependencies ==
 
== Dependencies ==
Line 19: Line 19:
 
Broadband has the following dependencies:
 
Broadband has the following dependencies:
  
*[http://www.python.org/download/ Python 2.6+] with
+
*[http://www.python.org/download/ Python 2.7.9+] with
**[http://new.scipy.org/download.html NumPy 1.4.1]
+
**[http://github.com/numpy/numpy NumPy 1.9.2+]
**[http://new.scipy.org/download.html Scipy 0.7.2]
+
**[http://github.com/scipy/scipy Scipy 0.14.1+]
**[http://matplotlib.sourceforge.net/ matplotlib 1.0.1]
+
**[http://matplotlib.sourceforge.net/ matplotlib 1.4.3+]
**[http://code.google.com/p/pyproj/ PyProj 1.8.9]
+
**[http://github.com/jswhit/pyproj PyProj 1.9.2+]
*[http://gcc.gnu.org GNU compilers (gcc, gfortran) v4.5.1]
+
*[http://gcc.gnu.org GNU compilers (gcc, gfortran) 4.5.1+]
  
Please refer to the [[Broadband User Guide v15.3.0]] for more details about the specific versions required for each of the packages above. This version of the Broadband Platform does NOT require Intel compilers.
+
Please refer to the [[Broadband User Guide v16.5.0]] for more details about the specific versions required for each of the packages above. This version of the Broadband Platform does NOT require Intel compilers.
  
 
== Documentation Including Installation Instructions ==
 
== Documentation Including Installation Instructions ==
 
+
The Broadband Platform User Guide includes installation instructions:
User Guide Wiki (includes installation instructions):
+
*[[Broadband User Guide v16.5.0]] (includes easy installation instructions)
*[[Broadband User Guide v15.3.0]]
+
*[[Broadband Platform Manual Installation 16 5 0|Broadband Platform Manual Installation]]
 +
*[[Broadband v16.5.0 Release Notes|Broadband 16.5.0 Release Notes]]
 +
*[[BBP 16.5.0 Virtual Box Image]]
 
*[[Broadband File Format Guide]]
 
*[[Broadband File Format Guide]]
 
+
*[[Broadband Data Products]]
== Downloads ==
 
 
 
To install and use the Broadband platform, you need the source code, one or more Green's Functions packages, and optionally one or more Validation packages. The Broadband Platform contains cumulative improvements to the geoscientific codes and software infrastructure. We recommend use of the most recent version of the Broadband Platform, unless you are trying to reproduce results generated with an earlier version of the platform.
 
 
 
Users that are upgrading from previous version of the Broadband Platform will need to retrieve new versions of all the Broadband Platform packages as there have been significant changes in all the packages since the previous 14.3.0 release.
 
 
 
There are detailed installation instructions in the [[Broadband User Guide v15.3.0]].
 
 
 
Detailed instructions to setup the Broadband Platform as a local installation on a Linux Machine are provided in the [[Broadband User Guide v15.3.0]]. Briefly, they can be summarized in the following steps:
 
# The software can be installed in an account on a Linux computer with at least 10GB of disk storage and C, Fortran, and Python software installed.
 
# From this Linux computer, start a web browser and point to this download page.  Alternatively, you can download the files to a different machine and use FTP or SFTP to copy them over.
 
# Download each file into a directory and run the md5sum program to confirm you have an undamaged version of the distribution files by comparing the md5sum provided below against the one calculated at the local Linux computer.
 
# Uncompress the distribution (tar.gz) files into the proper directory structure as described in the [[Broadband User Guide v15.3.0]].
 
# Build the executables by running the top level makefile.
 
# Configure your environment by adding a few Broadband Platform variables to your shell's environment.
 
# Confirm the code is built correctly by running UnitTests.
 
# Confirm the code runs correctly on your system by running AcceptanceTests.
 
# Use the platform for research purposes.
 
 
 
== Current Broadband Platform Release ==
 
 
 
The current SCEC Broadband platform release is v15.3.0. Links to the source distribution and Green's Functions and Validation packages are listed in the table below:
 
 
 
==== Required Files ====
 
 
 
The following packages are the minimum set of files required to run the Broadband Platform. This set includes files needed for running the Unit and Acceptance tests.
 
 
 
* Source Distribution (56MB): [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/bbp-dist-15.3.0.tar.gz BBP 15.3.0], [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/bbp-dist-15.3.0.tar.gz.md5 BBP 15.3.0.md5]
 
* LA Basin Model (1.4GB): [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/labasin-velocity-model-15.3.0.tar.gz LA Basin], [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/labasin-velocity-model-15.3.0.tar.gz.md5 LA Basin.md5] (Needed for Unit and Acceptance Tests)
 
* Northridge Validation Event (17MB): [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/northridge-validation-15.3.0.tar.gz Northridge], [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/northridge-validation-15.3.0.tar.gz.md5 Northridge.md5] (Needed for Acceptance Tests)
 
 
 
==== Additional Regions/Velocity Models ====
 
 
 
The following packages are optional downloads. Users should download packages for the regions they are interested in.
 
 
 
* Mojave (1.7GB): [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/mojave-velocity-model-15.3.0.tar.gz Mojave], [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/mojave-velocity-model-15.3.0.tar.gz.md5 Mojave.md5]
 
* Northern California (1.4GB): [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/nocal-velocity-model-15.3.0.tar.gz NoCal], [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/nocal-velocity-model-15.3.0.tar.gz.md5 NOCAL.md5]
 
* Western Japan (1.8GB): [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/westernjapan-velocity-model-15.3.0.tar.gz Western Japan], [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/westernjapan-velocity-model-15.3.0.tar.gz.md5 Western Japan.md5]
 
* Central Japan (1.8GB): [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/centraljapan-velocity-model-15.3.0.tar.gz Central Japan], [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/centraljapan-velocity-model-15.3.0.tar.gz.md5 Central Japan.md5]
 
* Eastern Canada (3.3GB): [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/canada1000-velocity-model-15.3.0.tar.gz Eastern Canada], [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/canada1000-velocity-model-15.3.0.tar.gz.md5 Eastern Canada.md5]
 
* Eastern United States (3.5GB): [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/ceus1000-velocity-model-15.3.0.tar.gz Eastern United States], [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/ceus1000-velocity-model-15.3.0.tar.gz.md5 Eastern United States.md5]
 
 
 
==== GMPE Verification Pacakges ====
 
 
 
* GMPEs (3.2MB): [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/gmpe-verification-15.3.0.tar.gz GMPEs], [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/gmpe-verification-15.3.0.tar.gz.md5 GMPE.md5] (Requires both LA Basin and Northern California Regions)
 
 
 
==== Additional Validation Events ====
 
 
 
* [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/whittier-validation-15.3.0.tar.gz Whittier], [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/whittier-validation-15.3.0.tar.gz.md5 Whittier.md5] (Requires LA Basin Region)
 
* [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/nr-validation-15.3.0.tar.gz NR], [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/nr-validation-15.3.0.tar.gz.md5 NR.md5] (Requires LA Basin Region)
 
* [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/chino-hills-validation-15.3.0.tar.gz Chino Hills], [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/chino-hills-validation-15.3.0.tar.gz.md5 ChinoHills.md5] (Requires LA Basin Region)
 
* [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/lomaprieta-validation-15.3.0.tar.gz Loma Prieta], [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/lomaprieta-validation-15.3.0.tar.gz.md5 Loma Prieta.md5] (Requires Northern California Region)
 
* [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/lomap-validation-15.3.0.tar.gz LOMAP], [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/lomap-validation-15.3.0.tar.gz.md5 LOMAP.md5] (Requires Northern California Region)
 
* [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/alum-rock-validation-15.3.0.tar.gz Alum Rock], [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/alum-rock-validation-15.3.0.tar.gz.md5 AlumRock.md5] (Requires Northern California Region)
 
* [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/landers-validation-15.3.0.tar.gz Landers], [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/landers-validation-15.3.0.tar.gz.md5 Landers.md5] (Requires Mojave Region)
 
* [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/nps-validation-15.3.0.tar.gz North Palm Springs], [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/nps-validation-15.3.0.tar.gz.md5 NPS.md5] (Requires Mojave Region)
 
* [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/saguenay1k-validation-15.3.0.tar.gz Saguenay], [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/saguenay1k-validation-15.3.0.tar.gz.md5 Saguenay.md5] (Requires Eastern Canada Region)
 
* [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/rdl1k-validation-15.3.0.tar.gz Riviere du Loup], [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/rdl1k-validation-15.3.0.tar.gz.md5 RDL.md5] (Requires Eastern Canada Region)
 
* [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/mineral-validation-15.3.0.tar.gz Mineral], [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/mineral-validation-15.3.0.tar.gz.md5 Mineral.md5] (Requires Eastern United States Region)
 
* [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/tottori-validation-15.3.0.tar.gz Tottori], [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/tottori-validation-15.3.0.tar.gz.md5 Tottori.md5] (Requires Western Japan Region)
 
* [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/niigata-validation-15.3.0.tar.gz Niigata], [http://hypocenter.usc.edu/research/bbp/versions/15.3.0/niigata-validation-15.3.0.tar.gz.md5 Niigata.md5] (Requires Central Japan Region)
 
 
 
==== Documentation ====
 
 
 
* [[Broadband User Guide v15.3.0]]
 
* [[Broadband v15.3.0 Release Notes]]
 
 
 
== Older Broadband Platform Releases ==
 
 
 
Earlier version of the broadband platform software and data distributions are provided to support existing Broadband platform users. However, we recommend all users upgrade to the most recent version at first opportunity. Earlier releases can be found in the [[Broadband Platform Previous Releases]] page.
 
  
 
== Supporting Materials ==
 
== Supporting Materials ==
*[http://hypocenter.usc.edu/research/SSA/Broadband-poster-SSA-2014-final.pdf Broadband Poster from SSA 2014 - Fabio Silva (PDF, 8.3MB)]
+
*[http://hypocenter.usc.edu/research/SSA2016/Broadband-poster-SSA-2016.pdf Broadband Poster from SSA 2016 (PDF, 14MB)]
*[http://hypocenter.usc.edu/research/AGU14/Broadband-poster-AGU-2014.pdf Broadband poster from AGU 2014 (PDF, 13.8MB)]
+
*[http://hypocenter.usc.edu/research/bbp/bbp-16-5-release.pdf Broadband Platform 16.5.0 Release Overview (PDF, 1.9 MB)]
*[http://hypocenter.usc.edu/research/broadband/documents/Broadband_overview.ppt Broadband overview talk from SC10 (PPT, 3.7 MB)]  
 
*[http://hypocenter.usc.edu/research/broadband/documents/Broadband_module_schematics.pptx Technical diagrams of Broadband module relationships (PPTX, 16 KB)]
 
 
 
== Development version ==
 
 
 
If you're interested in working with the latest development version of the platform, you can check it out from
 
svn co https://source.usc.edu/svn/broadband/trunk
 
 
 
Details about working with the development version are provided in the User Guide.
 
 
 
The next version of Broadband is expected to be released in Q3 of 2015.
 
<!--
 
Additional details about this version is available here:
 
*[[Broadband Development Version]]
 
 
 
Details about an un-released development version of broadband are posted here:
 
*[[Broadband User Guide v11.7.0]]
 
-->
 
  
 
== Help ==
 
== Help ==
 
 
For assistance with the Broadband Platform, you may
 
For assistance with the Broadband Platform, you may
 
* Email software @ scec.org with specific questions
 
* Email software @ scec.org with specific questions
Line 134: Line 47:
  
 
== License ==
 
== License ==
 
 
SCEC Broadband Platform software distributions are released under an Apache 2.0 open-source license as described here [[Broadband License]].
 
SCEC Broadband Platform software distributions are released under an Apache 2.0 open-source license as described here [[Broadband License]].
  
== Collaborators ==
+
== Broadband Platform Developers and Collaborators ==
 
+
*[http://www.scec.org SCEC]
*[http://www.erdw.ethz.ch/index_EN ETH Zurich - Swiss Federal Institute of Technology Zurich]
+
*[http://www.geology.sdsu.edu/ San Diego State University Dept of Geological Sciences]
 +
*[http://www.geol.ucsb.edu/ U.C. Santa Barbara Dept of Earth Sciences]
 +
*[http://www.crustal.ucsb.edu/ UCSB Institute for Crustal Studies]
 
*[http://www.seismo.unr.edu University of Nevada Reno]
 
*[http://www.seismo.unr.edu University of Nevada Reno]
 
*[http://www.uwo.ca/earth/ University of Western Ontario]
 
*[http://www.uwo.ca/earth/ University of Western Ontario]
 +
*[http://www.erdw.ethz.ch/index_EN ETH Zurich - Swiss Federal Institute of Technology Zurich]
 +
*[http://earthquake.usgs.gov USGS Earthquake Hazards Program including Pasadena California]
 +
*[http://www.aecom-urs.com AECOM / URS]
 +
*[http://www.ce.berkeley.edu University of California, Berkeley]
 
*[http://peer.berkeley.edu Pacific Earthquake Engineering Research Center]
 
*[http://peer.berkeley.edu Pacific Earthquake Engineering Research Center]
*[http://www.ce.berkeley.edu University of California, Berkeley]
 
*[http://www.geology.sdsu.edu/ San Diego State University Dept of Geological Sciences]
 
*[http://www.geol.ucsb.edu/ U.C. Santa Barbara Dept of Earth Sciences]
 
*[http://www.crustal.ucsb.edu/ UCSB Institute for Crustal Studies]
 
*[http://www.urscorp.com/ URS Corporation]
 
*[http://www.scec.org SCEC]
 
*[http://scec.usc.edu/scecpedia SCEC/CME Project]
 
  
 
== Frequently Asked Questions (FAQ) ==
 
== Frequently Asked Questions (FAQ) ==
Line 155: Line 66:
 
* [[BBP FAQ]]
 
* [[BBP FAQ]]
  
== See Also ==
+
== Related Wiki Entries ==
 +
*[http://scec.usc.edu/scecpedia SCEC Wiki Main]
 +
*[http://www.scec.org SCEC Home Page]
 
*[[SWUS Project]]
 
*[[SWUS Project]]
*[[Broadband Platform 2007]]
 
 
*[http://scec.usc.edu/scecpedia/software SCEC Software Downloads]
 
*[http://scec.usc.edu/scecpedia/software SCEC Software Downloads]
*[http://scec.usc.edu/scecpedia SCEC Wiki Main]
 
*[http://www.scec.org SCEC Home Page]
 
*[[Broadband User Guide Current]]
 
*[[Broadband User Guide Development]]
 
*[[Broadband Server]]
 
*[[Broadband Hanging Wall Simulation]]
 
*[[Broadband Development]]
 
*[[Broadband Platform Installation Guide Current]]
 
*[[Broadband Platform User Guide Current]]
 
  
==References==
+
== Older Broadband Platform Releases ==
 +
Earlier version of the broadband platform software and data distributions are provided to support existing Broadband platform users. However, we recommend all users upgrade to the most recent version at first opportunity. Earlier releases can be found in the [[Broadband Platform Previous Releases]] page.
 +
 
 +
== Development version ==
 +
If you're an advanced user, interested in working with the latest development version of the platform, you can check it out from
 +
svn co https://source.usc.edu/svn/broadband/trunk
 +
 
 +
Details about working with the development version are provided in the User Guide.
 +
 
 +
The next version of Broadband is expected to be released in Q3 of 2016.
 +
 
 +
== Acknowledging ==
 +
Please support the Broadband Platform project by acknowledging the use of this software. Acknowledgements and citations help us obtain additional resources for continued development of the platform. If you use the Broadband Platform software for work resulting in an academic publication, we would appreciate it if one, or more, of the following paper is cited.
 +
 
 +
References for specific computational methods included in the Broadband Platform (v15.3.0 and later, including v16.5.0) and for the validation procedures developed by the Broadband Platform include:
 +
# Anderson, J. G (2015) The Composite Source Model for Broadband Simulations of Strong Ground Motions Seismological Research Letters, January/February 2015, v. 86, p. 68-74, First published on December 17, 2014, doi:10.1785/0220140098
 +
# Atkinson, G. M., and Assatourians, K. (2015) Implementation and Validation of EXSIM (A Stochastic Finite‐Fault Ground‐Motion Simulation Algorithm) on the SCEC Broadband Platform Seismological Research Letters, January/February 2015, v. 86, p. 48-60, First published on December 17, 2014, doi:10.1785/0220140097
 +
# Crempien, J. G. F., and Archuleta, R. J. (2015) UCSB Method for Simulation of Broadband Ground Motion from Kinematic Earthquake Sources Seismological Research Letters, January/February 2015, v. 86, p. 61-67, First published on December 17, 2014, doi:10.1785/0220140103
 +
# Dreger, D. S., Beroza, G.C., Day, S. M., Goulet, C. A., Jordan, T. H., Spudich, P. A., and Stewart, J. P. (2015). Validation of the SCEC Broadband Platform V14.3 Simulation Methods Using Pseudospectral Acceleration Data, Seismol. Res. Lett., 86, no. 1, doi:10.1785/0220140118.
 +
# Dreger, D. S., and Jordan, T. H. (2015) Introduction to the Focus Section on Validation of the SCEC Broadband Platform V14.3 Simulation Methods Seismological Research Letters, January/February 2015, v. 86, p. 15-16, doi:10.1785/0220140233
 +
# Goulet, C.A., Abrahamson, N.A., Somerville, P.G. and K, E. Wooddell (2015) The SCEC Broadband Platform Validation Exercise: Methodology for Code Validation in the Context of Seismic-Hazard Analyses, Seismol. Res. Lett., 86, no. 1, doi: 10.1785/0220140104
 +
# Graves, R., and Pitarka, A. (2015) Refinements to the Graves and Pitarka (2010) Broadband Ground‐Motion Simulation Method Seismological Research Letters, January/February 2015, v. 86, p. 75-80, First published on December 17, 2014, doi:10.1785/0220140101
 +
# Olsen, K. B., and Takedatsu, R. (2015) The SDSU Broadband Ground‐Motion Generation Module BBtoolbox Version 1.5 Seismological Research Letters, January/February 2015, v. 86, p. 81-88, First published on December 17, 2014, doi:10.1785/0220140102
 +
 
 +
The primary reference for the Broadband Platform software system (v15.3.0 and later, including v16.50) is:
 +
#Maechling, P. J., F. Silva, S. Callaghan, and T. H. Jordan (2015). SCEC Broadband Platform: System Architecture and Software Implementation, Seismol. Res. Lett., 86, no. 1, doi: 10.1785/0220140125.
  
#Graves, R. W. and A. Pitarka (2010). “Broadband Ground-Motion Simulation Using a Hybrid Approach.” Bull. Seis. Soc. Am., 100(5A), pp. 2095-2123, doi: 10.1785/0120100057.  [http://hypocenter.usc.edu/research/broadband/documents/Graves_Pitarka_2010.pdf link]
+
== Related Entries ==
#Mai, P.M., W. Imperatori, and K.B. Olsen (2010). “Hybrid broadband ground motion simulations: combining long-period deterministic synthetics with high frequency multiple S-to-S back-scattering.” Bull. Seis. Soc. Am., 100(5A), pp. 2124-2142, doi: 10.1785/0120080194. [http://hypocenter.usc.edu/research/broadband/documents/Mai_Imperatori_Olsen_2010.pdf link]
+
*[http://scec.usc.edu/scecpedia SCEC/CME Project]
#Schmedes, J., R. J. Archuleta, and D. Lavallée (2010). “Correlation of earthquake source parameters inferred from dynamic rupture simulations.” J. Geophys. Res., 115, B03304, doi:10.1029/2009JB006689.  [http://hypocenter.usc.edu/research/broadband/documents/Schmedes_Archuleta_Lavallee_2010.pdf link]
 

Latest revision as of 14:33, 27 May 2016

Fig 1: Broadband Platform.

The SCEC Broadband Platform is a software system that can generate 0-100 Hz seismograms for historical and scenario earthquakes in California, Eastern North America, and Japan using several alternative computational methods.

Overview

The goal of the SCEC Broadband Simulation Platform is to generate broadband (0-100 Hz) ground motions for earthquakes. The SCEC Broadband Platform is a collaborative software development project involving SCEC researchers, research engineers, graduate students, and the SCEC/CME software development group. SCEC scientific groups have contributed modules to the Broadband Platform including rupture generation, low- and high-frequency seismogram synthesis, non-linear site effects, and visualization. These complex scientific codes have been integrated into a system that supports easy on-demand computation of broadband seismograms. The SCEC Broadband Platform is designed to be used by both scientific and engineering researchers with some experience interpreting ground motion simulations.

Users may calculate broadband seismograms for both historical earthquakes (validation events including Northridge and Loma Prieta) and user-defined earthquakes. The platform produces a variety of data products, including broadband seismograms, rupture visualizations, and several goodness-of-fit plots. Users can install the platform on their own machine, verify that it is installed correctly, and run their own simulations on demand without requiring knowledge of any of the code involved. Users may run a validation event, supply their own simple source description, or provide a rupture description in SRF format. Users may specify their own list of stations or use a provided list. Currently the platform supports stations and events in Southern California, the Bay Area, the Mojave Desert, Eastern United States, Eastern Canada, Central and Western Japan. Users may select among various method that include rupture generation, low-frequency synthesis, high-frequency synthesis, and incorporation of site effects, with the option of running a goodness-of-fit comparison against observed or simulated seismograms. These codes have been validated against recorded ground motions from real events.

The Broadband Platform software development is performed using modern software engineering practices, including version control, user documentation, acceptance tests, and formal releases, with the aim of accuracy, reliability, ease of installation and use.

Current Release

The current official release of Broadband Platform is v16.5.0. This is a new version of the platform that includes several new capabilities. It is the first major release of the Broadband Platform since version 15.3.0, released in March 2015. Details of the new features along with several bugs fixes are provided in the release notes. New Broadband Platform users should work with this version of the software. We recommend existing Broadband platform users migrate to this new version whenever possible.

Dependencies

Broadband has the following dependencies:

Please refer to the Broadband User Guide v16.5.0 for more details about the specific versions required for each of the packages above. This version of the Broadband Platform does NOT require Intel compilers.

Documentation Including Installation Instructions

The Broadband Platform User Guide includes installation instructions:

Supporting Materials

Help

For assistance with the Broadband Platform, you may

  • Email software @ scec.org with specific questions
  • Browse and submit new trouble tickets, or feature requests, at Broadband Trac site. SCEC user login is required to submit trouble tickets this way.

License

SCEC Broadband Platform software distributions are released under an Apache 2.0 open-source license as described here Broadband License.

Broadband Platform Developers and Collaborators

Frequently Asked Questions (FAQ)

We post BBP user questions and our response to a Broadband Platform Frequently Asked Questions (FAQ) page:

Related Wiki Entries

Older Broadband Platform Releases

Earlier version of the broadband platform software and data distributions are provided to support existing Broadband platform users. However, we recommend all users upgrade to the most recent version at first opportunity. Earlier releases can be found in the Broadband Platform Previous Releases page.

Development version

If you're an advanced user, interested in working with the latest development version of the platform, you can check it out from

svn co https://source.usc.edu/svn/broadband/trunk

Details about working with the development version are provided in the User Guide.

The next version of Broadband is expected to be released in Q3 of 2016.

Acknowledging

Please support the Broadband Platform project by acknowledging the use of this software. Acknowledgements and citations help us obtain additional resources for continued development of the platform. If you use the Broadband Platform software for work resulting in an academic publication, we would appreciate it if one, or more, of the following paper is cited.

References for specific computational methods included in the Broadband Platform (v15.3.0 and later, including v16.5.0) and for the validation procedures developed by the Broadband Platform include:

  1. Anderson, J. G (2015) The Composite Source Model for Broadband Simulations of Strong Ground Motions Seismological Research Letters, January/February 2015, v. 86, p. 68-74, First published on December 17, 2014, doi:10.1785/0220140098
  2. Atkinson, G. M., and Assatourians, K. (2015) Implementation and Validation of EXSIM (A Stochastic Finite‐Fault Ground‐Motion Simulation Algorithm) on the SCEC Broadband Platform Seismological Research Letters, January/February 2015, v. 86, p. 48-60, First published on December 17, 2014, doi:10.1785/0220140097
  3. Crempien, J. G. F., and Archuleta, R. J. (2015) UCSB Method for Simulation of Broadband Ground Motion from Kinematic Earthquake Sources Seismological Research Letters, January/February 2015, v. 86, p. 61-67, First published on December 17, 2014, doi:10.1785/0220140103
  4. Dreger, D. S., Beroza, G.C., Day, S. M., Goulet, C. A., Jordan, T. H., Spudich, P. A., and Stewart, J. P. (2015). Validation of the SCEC Broadband Platform V14.3 Simulation Methods Using Pseudospectral Acceleration Data, Seismol. Res. Lett., 86, no. 1, doi:10.1785/0220140118.
  5. Dreger, D. S., and Jordan, T. H. (2015) Introduction to the Focus Section on Validation of the SCEC Broadband Platform V14.3 Simulation Methods Seismological Research Letters, January/February 2015, v. 86, p. 15-16, doi:10.1785/0220140233
  6. Goulet, C.A., Abrahamson, N.A., Somerville, P.G. and K, E. Wooddell (2015) The SCEC Broadband Platform Validation Exercise: Methodology for Code Validation in the Context of Seismic-Hazard Analyses, Seismol. Res. Lett., 86, no. 1, doi: 10.1785/0220140104
  7. Graves, R., and Pitarka, A. (2015) Refinements to the Graves and Pitarka (2010) Broadband Ground‐Motion Simulation Method Seismological Research Letters, January/February 2015, v. 86, p. 75-80, First published on December 17, 2014, doi:10.1785/0220140101
  8. Olsen, K. B., and Takedatsu, R. (2015) The SDSU Broadband Ground‐Motion Generation Module BBtoolbox Version 1.5 Seismological Research Letters, January/February 2015, v. 86, p. 81-88, First published on December 17, 2014, doi:10.1785/0220140102

The primary reference for the Broadband Platform software system (v15.3.0 and later, including v16.50) is:

  1. Maechling, P. J., F. Silva, S. Callaghan, and T. H. Jordan (2015). SCEC Broadband Platform: System Architecture and Software Implementation, Seismol. Res. Lett., 86, no. 1, doi: 10.1785/0220140125.

Related Entries