Difference between revisions of "CyberShake MareNostrum Training"

From SCECpedia
Jump to navigationJump to search
Line 131: Line 131:
 
=== PreCVM ===
 
=== PreCVM ===
  
Details about this stage are available [[CyberShake_Code_Base#PreCVM | here]].  This stage may be modified for Iceland, since each site may end up using the same volume.
+
Details about this stage are available [[CyberShake_Code_Base#PreCVM | here]].  This stage may be modified for Iceland, since each site may end up using the same volume.  Note that the volume dimensions must be evenly divisible by the number of cores in that dimension.
  
 
<ol>
 
<ol>
Line 154: Line 154:
 
<li><b>Copy over my UCVM batch script from /gpfs/scratch/pr1ejg00/pr1ejg10/TEST/ucvm.slrm .</b></li>
 
<li><b>Copy over my UCVM batch script from /gpfs/scratch/pr1ejg00/pr1ejg10/TEST/ucvm.slrm .</b></li>
  
<li><b>Submit the job.  When complete, make sure there are no errors in ucvm.e .</b></li>
+
<li><b>Submit the job.  When complete, make sure there are no errors in ucvm.e .</b>This is a parallel job, and may wait in the queue for some time before running.</li>
 
</ol>
 
</ol>
  
Line 174: Line 174:
  
 
Details about this stage are available [[CyberShake_Code_Base#PreAWP | here]].
 
Details about this stage are available [[CyberShake_Code_Base#PreAWP | here]].
 +
 +
<ol>
 +
<li><b>Copy over my PreAWP batch script from /gpfs/scratch/pr1ejg00/pr1ejg10/TEST/preawp.slrm .</b></li>
 +
 +
<li><b>Edit the script so that '--run-id 1' uses your correct run id, which might not be 1.</b></li>
 +
 +
<li><b>Submit the job.  When complete, make sure there are no errors in preawp.e .</b></li>
 +
</ol>
 +
 +
=== SGT ===
 +
 +
PreAWP must finish before you can run this stage.
 +
 +
We run two SGTs, one for each horizontal component.  PreAWP set up the input files needed for both horizontal components.  If you'd like to run the vertical also, you'd need to make changes to PreAWP.
 +
 +
<ol>
 +
<li><b>Copy over my SGT x and SGT y batch scripts from /gpfs/scratch/pr1ejg00/pr1ejg10/TEST/awp_x.slrm and awp_y.slrm .</b></li>
 +
 +
<li><b>Submit the job.  When complete, check awp_x.e and awp_y.e .</b></li>
 +
  We usually see lines like:
 +
<pre>
 +
Note: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG IEEE_UNDERFLOW_FLAG IEEE_DENORMAL
 +
</pre>
 +
 +
This is OK and is not an error.
 +
 +
This job runs on 1700 cores, so you may need to wait in the queue for a while before it runs.
 +
</ol>

Revision as of 21:45, 13 February 2020

This page provides training for running the CyberShake TEST site on MareNostrum (MN4)

Training overview

The goal of this training is to get you to run by hand all the steps involved in a CyberShake run. Here are the basic steps involved in the training:

  • Set up needed files
  • Initialize database with run information
  • Create Strain Green Tensors
  • Create synthetic seismograms and intensity measures
  • Populate database with intensity measures
  • Populate Hazard Dataset
  • Plot hazard curves

Actions you need to take will be in bold.

Terminal commands and output will be in this font.
My username is pr1ejg10 and my project is pr1ejg00.  Replace <username> or <working dir> with your username or your working directory, respectively.

Set up needed files

  1. Create a directory to work from. I recommend something in scratch.
  2. pr1ejg10@login2:~> cd /gpfs/scratch/pr1ejg00/<username>
    pr1ejg10@login2:/gpfs/scratch/pr1ejg00/pr1ejg10> mkdir TEST
    pr1ejg10@login2:/gpfs/scratch/pr1ejg00/pr1ejg10> cd TEST
    

    An overview of the code involved in CyberShake is provided here. For this test, we are using the SGT-related codes, the PP-related codes, and the Data Products codes, but not the Stochastic codes.

    Since MN4 does not permit outgoing connections, it is impossible to install CyberShake on MN4 directly from the repository. For the purposes of this training, I suggest you use my install directly. My CyberShake installation is located at:

    /gpfs/projects/pr1ejg00/CyberShake
    

    Due to the outgoing connection problem, on MN4 we are using a local SQLite database rather than a remote MySQL database, which is what SCEC's CyberShake install uses. Each trainee should work from their own database.

  3. Copy in my training database from /gpfs/projects/pr1ejg00/CyberShake/database/training.sqlite.
  4. pr1ejg10@login2:/gpfs/scratch/pr1ejg00/pr1ejg10/TEST> cp /gpfs/projects/pr1ejg00/CyberShake/database/training.sqlite .
    
  5. In order to look at this database, we need sqlite. Add the SQLite module to your environment.
  6. pr1ejg10@login2:/gpfs/scratch/pr1ejg00/pr1ejg10/TEST> module load sqlite
    
  7. Let's examine this database. Use sqlite3 to investigate the tables.
    pr1ejg10@login2:/gpfs/scratch/pr1ejg00/pr1ejg10/TEST> sqlite3 training.sqlite
    SQLite version 3.20.0 2017-07-10 19:08:59
    Enter ".help" for usage hints.
    sqlite> .tables
    CyberShake_Runs                      IM_Types                           
    CyberShake_Site_Regions              PeakAmplitudes                     
    CyberShake_Site_Ruptures             Rupture_Variation_Scenario_IDs     
    CyberShake_Site_Types                Rupture_Variation_Scenario_Metadata
    CyberShake_Sites                     Rupture_Variations                 
    ERF_IDs                              Ruptures                           
    ERF_Metadata                         SGT_Variation_IDs                  
    ERF_Probability_Models               Studies                            
    Hazard_Curve_Points                  Velocity_Model_Metadata            
    Hazard_Curves                        Velocity_Models                    
    Hazard_Datasets     
    sqlite> .schema Velocity_Models
    CREATE TABLE Velocity_Models
    (
    Velocity_Model_ID integer primary key AUTOINCREMENT not null ,
    Velocity_Model_Name varchar(50) not null,
    Velocity_Model_Version varchar(50) not null
    );
    sqlite> select * from Velocity_Models;
    1|CVM-S4.26|4.26
    
    

    I have pre-inserted some of the setup you'll need, such as Ruptures, Rupture_Variations, and CyberShake_Site_Ruptures. For queries and insertions, SQLite uses practically identical syntax to MySQL. To quit, type .quit.

    Note that not all the tables defined in the full CyberShake schema are in this test database.

Initialize database with run information

CyberShake keeps track of what we call 'runs' in the database. A run is a full CyberShake calculation for a single site.

When we run large CyberShake studies, we have scripts which automatically create runs as part of our workflows. For this test, we will populate the database ourselves.

  1. Create a database entry for our test run.
  2. We will only specify the fields in the CyberShake_Runs table which are required. Some of them make less sense not in the workflow context. First, we will determine the site, velocity model, ERF, rupture variation scenario, and SGT variation IDs needed.
    sqlite> select * from CyberShake_Sites;
    1|CyberShake Verification Test - USC|TEST|34.0192|-118.286|1
    sqlite> select * from Velocity_Models;
    1|CVM-S4.26|4.26
    sqlite> select * from ERF_IDs;
    35|WGCEP (2007) UCERF2 - Single Branch|Mean UCERF 2 - Single Branch Earthquake Rupture Forecast FINAL|1|1
    36|WGCEP (2007) UCERF2 - Single Branch 200m| Mean UCERF 2 - Single Branch Earthquake Rupture Forecast FINAL, 200m|1|1
    sqlite> select * from SGT_Variation_IDs;
    1|AWP_ODC_SGT|SGTs generated with AWP-ODC-SGT with Qp=Qs=10000
    2|AWP_ODC_SGT GPU|SGTs generated with AWP-ODC-SGT GPU
    sqlite> select * from Rupture_Variation_Scenario_IDs;
    1|36|genslip-v3.3.1b|Graves & Pitarka (2014) with uniform grid down dip hypocenter location, modified rupture variation constant
    insert into CyberShake_Runs(Site_ID, ERF_ID, SGT_Variation_ID, Velocity_Model_ID, Rup_Var_Scenario_ID, Status, Status_Time, Last_User, Max_Frequency, Low_Frequency_Cutoff, SGT_Source_Filter_Frequency) values (1, 36, 1, 1, 1, "SGT Started", "2020-02-14 12:00:00", "<username>", 0.5, 0.5, 1.0)
    
  3. Determine the run ID, which you'll use for your test.
  4. sqlite> select Run_ID from CyberShake_Runs;
    1
    
  5. Exit sqlite. We're done with it for now.
  6. sqlite> .quit
    

Create Strain Green Tensors

As outlined here, there are 7 jobs we need to run to generate SGTs for our test site.

PreCVM

Details about this stage are available here. This stage may be modified for Iceland, since each site may end up using the same volume. Note that the volume dimensions must be evenly divisible by the number of cores in that dimension.

  1. Copy over my PreCVM batch script from /gpfs/scratch/pr1ejg00/pr1ejg10/TEST/precvm.slrm .
  2. pr1ejg10@login2:/gpfs/scratch/pr1ejg00/pr1ejg10/TEST> cp /gpfs/scratch/pr1ejg00/pr1ejg10/TEST/precvm.slrm .
    
  3. Edit the batch script to change the sqlite path (--server sqlite:...) to point to your sqlite file instead of mine.
  4. Submit the job. When complete, make sure there are no errors in precvm.e .

UCVM

PreCVM must finish before you can run this stage.

Details about this stage are available here. This stage will not be part of the Icelandic processing - you won't use UCVM to create a velocity model - but some other code will provide one.

  1. Copy over my UCVM batch script from /gpfs/scratch/pr1ejg00/pr1ejg10/TEST/ucvm.slrm .
  2. Submit the job. When complete, make sure there are no errors in ucvm.e .This is a parallel job, and may wait in the queue for some time before running.

PreSGT

PreCVM must finish before you can run this stage.

Details about this stage are available here.

  1. Copy over my PreSGT batch script from /gpfs/scratch/pr1ejg00/pr1ejg10/TEST/presgt.slrm .
  2. Submit the job. When complete, make sure there are no errors in presgt.e .

PreAWP

UCVM and PreSGT must finish before you can run this stage. Note that we're skipping the Smoothing step, since we're only using a single velocity model.

Details about this stage are available here.

  1. Copy over my PreAWP batch script from /gpfs/scratch/pr1ejg00/pr1ejg10/TEST/preawp.slrm .
  2. Edit the script so that '--run-id 1' uses your correct run id, which might not be 1.
  3. Submit the job. When complete, make sure there are no errors in preawp.e .

SGT

PreAWP must finish before you can run this stage.

We run two SGTs, one for each horizontal component. PreAWP set up the input files needed for both horizontal components. If you'd like to run the vertical also, you'd need to make changes to PreAWP.

  1. Copy over my SGT x and SGT y batch scripts from /gpfs/scratch/pr1ejg00/pr1ejg10/TEST/awp_x.slrm and awp_y.slrm .
  2. Submit the job. When complete, check awp_x.e and awp_y.e .
  3. We usually see lines like:
    Note: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG IEEE_UNDERFLOW_FLAG IEEE_DENORMAL
    

    This is OK and is not an error.

    This job runs on 1700 cores, so you may need to wait in the queue for a while before it runs.