Difference between revisions of "Broadband Platform"

From SCECpedia
Jump to navigationJump to search
 
(23 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
[[File:SRL_Cover_v8.png|350px|thumb|right|Fig 1: Broadband Platform showing ground motion simulation methods (blue circles), and optional post-processing methods (green circles).]]
 
[[File:SRL_Cover_v8.png|350px|thumb|right|Fig 1: Broadband Platform showing ground motion simulation methods (blue circles), and optional post-processing methods (green circles).]]
  
The SCEC Broadband Platform is a software system that can generate 0-100 Hz seismograms for historical and scenario earthquakes in California, Eastern North America, and Japan using several alternative computational methods.
+
The Southern California Earthquake Center (SCEC) Broadband Platform (BBP) is a software system that can generate 0-20+ Hz seismograms for historical and scenario earthquakes in California, Eastern North America, and Japan using several alternative computational methods.
  
== Overview ==  
+
== Current Release ==
 +
The current release of the SCEC Broadband Platform software is available for download from:
 +
* [https://github.com/SCECcode/bbp Broadband Platform v22.4.0 Software Source Code Repository]
 +
* [https://github.com/SCECcode/bbp/wiki Broadband Platform Wiki-based Documentation]
  
The goal of the SCEC Broadband Simulation Platform is to generate broadband (0-100 Hz) ground motions for earthquakes. The SCEC Broadband Platform is a collaborative software development project involving SCEC researchers, research engineers, graduate students, and the SCEC/CME software development group. SCEC scientific groups have contributed modules to the Broadband Platform including rupture generation, low- and high-frequency seismogram synthesis, non-linear site effects, and visualization. These complex scientific codes have been integrated into a system that supports easy on-demand computation of broadband seismograms. The SCEC Broadband Platform is designed to be used by both scientific and engineering researchers with some experience interpreting ground motion simulations.
+
This version was released in May 2022. BBP v22.4 includes several new capabilities. Details of the new features and capabilities of BBP v22.4 are described in the [https://github.com/SCECcode/BBP/wiki/Release-Notes BBP v22.4 release notes]. We recommend that all new users work with BBP v22.4 because this version adds new capabilities and improvements to the methods provided in earlier releases of the Broadband Platform. We recommend existing Broadband platform users migrate to BBP v22.4 whenever possible. Previous versions of the Broadband Platform will remain available for users that want to reproduce results produced with earlier versions of the Platform. Please review the [https://github.com/SCECcode/BBP/wiki/Installation BBP installation instructions] for details on how to download and install BBP v22.4 on your local computer.
  
Users may calculate broadband seismograms for both historical earthquakes (validation events including Northridge and Loma Prieta) and user-defined earthquakes. The platform produces a variety of data products, including broadband seismograms, rupture visualizations, and several goodness-of-fit plots.  Users can install the platform on their own machine, verify that it is installed correctly, and run their own simulations on demand without requiring knowledge of any of the code involved. Users may run a validation event, supply their own simple source description, or provide a rupture description in SRF format. Users may specify their own list of stations or use a provided list. Currently the platform supports stations and events in Southern California, the Bay Area, the Mojave Desert, Eastern United States, Eastern Canada, Central and Western Japan. Users may select among various method that include rupture generation, low-frequency synthesis, high-frequency synthesis, and incorporation of site effects, with the option of running a goodness-of-fit comparison against observed or simulated seismograms. These codes have been validated against recorded ground motions from real events.
+
== Overview ==
 +
The goal of the SCEC Broadband Simulation Platform is to generate broadband (0-20+ Hz) ground motions for earthquakes. The SCEC Broadband Platform is a collaborative software development project involving SCEC researchers, research engineers, graduate students, and the SCEC/CME software development group. SCEC scientific groups have contributed modules to the Broadband Platform including kinematic rupture generation, low- and high-frequency seismogram synthesis using 3D wave propagation through 1D layered velocity structures, non-linear site effects, ground motion intensity measure calculations, and visualization. These complex scientific codes have been integrated into a system that supports easy on-demand computation of broadband seismograms, providing user-defined, repeatable calculation of ground-motion seismograms, using alternative simulation methods, and software utilities to generate tables, plots, and maps. The SCEC Broadband Platform is designed to be used by both scientific and engineering researchers with some experience interpreting ground motion simulations.
  
The Broadband Platform software development is performed using modern software engineering practices, including version control, user documentation, acceptance tests, and formal releases, with the aim of accuracy, reliability, ease of installation and use.
+
Users may calculate broadband seismograms for both historical earthquakes (validation events including Northridge, Loma Prieta, etc.) and user-defined earthquakes. The platform produces a variety of data products, including broadband seismograms, rupture visualizations, and several goodness-of-fit plots. When running a validation event, users supply their own simple source description, or provide a rupture description in SRF format. Users may specify their own list of stations or use a provided list.
  
== Current Release ==
+
The SCEC BBP software can be compiled and run on recent Linux systems with GNU compilers. The Broadband Platform continues to evolve, and new versions of the BBP are released periodically on GitHub. The latest release includes seven simulation methods, eight simulation regions covering California, Japan, Eastern North America, and the ability to compare simulation results against empirical ground motion models. The newest features include the ability to simulate multi-segment ruptures using several simulation methods. And, in addition to a new simulation method, it now includes improvements to several existing ground motion simulation methods and revised Green’s functions for all simulation regions. In this release, the site response module is integrated with all simulation methods and can also be used for comparing simulated data against historical earthquakes
  
The current official release of Broadband Platform is v17.3.0. This is a new version of the platform that includes several new capabilities and it is available on the [https://github.com/SCECcode/bbp Broadband Platform GitHub website]. It is the first major release of the Broadband Platform since version 16.5.0, released in May 2016. Details of the new features along with several bugs fixes are provided in the release notes. New Broadband Platform users should work with this version of the software. We recommend existing Broadband platform users migrate to this new version whenever possible.
+
The Broadband Platform is open-source software that is made available under the terms of the BSD-3 License. A copy of the License can be found with the software in the 'LICENSE' file in the GitHub repository.
  
 
== Technical Support  ==
 
== Technical Support  ==
Line 29: Line 33:
 
*[http://www.erdw.ethz.ch/index_EN ETH Zurich - Swiss Federal Institute of Technology Zurich]
 
*[http://www.erdw.ethz.ch/index_EN ETH Zurich - Swiss Federal Institute of Technology Zurich]
 
*[http://earthquake.usgs.gov USGS Earthquake Hazards Program including Pasadena California]
 
*[http://earthquake.usgs.gov USGS Earthquake Hazards Program including Pasadena California]
*[http://www.aecom-urs.com AECOM]
+
*[http://www.aecom.com AECOM]
 
*[http://www.ce.berkeley.edu University of California, Berkeley]
 
*[http://www.ce.berkeley.edu University of California, Berkeley]
 
*[http://peer.berkeley.edu Pacific Earthquake Engineering Research Center]
 
*[http://peer.berkeley.edu Pacific Earthquake Engineering Research Center]
Line 38: Line 42:
 
*[http://www.bosai.go.jp/e/ National Research Institute for Earth Sciences and Disaster Resilience, Tsukuba, Japan]
 
*[http://www.bosai.go.jp/e/ National Research Institute for Earth Sciences and Disaster Resilience, Tsukuba, Japan]
  
== Supporting Materials ==
+
== Broadband Publications ==
 +
*[https://pubs.geoscienceworld.org/ssa/srl/article/88/6/1539-1552/353986 SRL Article]
 +
 
 +
== Supporting Presentation Materials ==
 
*[http://hypocenter.usc.edu/research/BBP/Goulet_BBP_20170920.pptx Broadband Platform Description - 2017 (pptx, 1.6 MB)]
 
*[http://hypocenter.usc.edu/research/BBP/Goulet_BBP_20170920.pptx Broadband Platform Description - 2017 (pptx, 1.6 MB)]
*[http://hypocenter.usc.edu/research/bbp/california_gfs_16_5.pdf California Map Showing Suggested Approximate Regions for GFs (PDF, 133KB)]
+
*[http://hypocenter.usc.edu/research/bbp/california_gfs_19_4.pdf California Map Showing Suggested Approximate Regions for GFs (PDF, 133KB)]
*[http://hypocenter.usc.edu/research/SSA/Broadband-poster-SSA-2017.pdf Broadband Poster from SSA 2017 (PDF, 14MB)]
+
*[http://hypocenter.usc.edu/research/SSA/Broadband-poster-SSA-2019.pdf Broadband Poster from SSA 2019 (PDF, 14MB)]
 
*[http://hypocenter.usc.edu/research/bbp/bbp-16-5-release.pdf Broadband Platform 16.5.0 Release Overview (PDF, 1.9 MB)]
 
*[http://hypocenter.usc.edu/research/bbp/bbp-16-5-release.pdf Broadband Platform 16.5.0 Release Overview (PDF, 1.9 MB)]
 
*[http://hypocenter.usc.edu/research/BBP/Maechling_BBP_5May2015_v3.pptx Broadband Platform Description - 2015 (pptx, 3.9 MB)]
 
*[http://hypocenter.usc.edu/research/BBP/Maechling_BBP_5May2015_v3.pptx Broadband Platform Description - 2015 (pptx, 3.9 MB)]
Line 48: Line 55:
 
We post BBP user questions and our response to a Broadband Platform Frequently Asked Questions (FAQ) page:
 
We post BBP user questions and our response to a Broadband Platform Frequently Asked Questions (FAQ) page:
 
* [https://github.com/SCECcode/BBP/wiki/FAQ BBP FAQ]
 
* [https://github.com/SCECcode/BBP/wiki/FAQ BBP FAQ]
 +
* [http://scec.usc.edu/scecpedia/Broadband_Product_Backlog Broadband Platform Backlog]
  
 
== Related Wiki Entries ==
 
== Related Wiki Entries ==
Line 59: Line 67:
  
 
== Acknowledging ==
 
== Acknowledging ==
Please support the Broadband Platform project by acknowledging the use of this software. Acknowledgements and citations help us obtain additional resources for continued development of the platform. If you use the Broadband Platform software for work resulting in an academic publication, we would appreciate it if one, or more, of the following paper is cited.
+
Please support the Broadband Platform project by acknowledging the use of this software in your presentations and publications. Acknowledgements and citations help us obtain additional resources for continued development of the platform. If you use the Broadband Platform software for work resulting in an academic publication, we would appreciate it if one, or more, of the following paper is cited.
  
 
The primary reference for the Broadband Platform software system is:
 
The primary reference for the Broadband Platform software system is:
 
#Maechling, P. J., F. Silva, S. Callaghan, and T. H. Jordan (2015). SCEC Broadband Platform: System Architecture and Software Implementation, Seismol. Res. Lett., 86, no. 1, doi: 10.1785/0220140125.
 
#Maechling, P. J., F. Silva, S. Callaghan, and T. H. Jordan (2015). SCEC Broadband Platform: System Architecture and Software Implementation, Seismol. Res. Lett., 86, no. 1, doi: 10.1785/0220140125.
  
References for specific computational methods included in the Broadband Platform (v15.3.0 and later, including v16.5.0) and for the validation procedures developed by the Broadband Platform include:
+
References for specific computational methods included in the Broadband Platform and for the validation procedures developed by the Broadband Platform include:
 
# Goulet, C.A., Abrahamson, N.A., Somerville, P.G. and K, E. Wooddell (2015) The SCEC Broadband Platform Validation Exercise: Methodology for Code Validation in the Context of Seismic-Hazard Analyses, Seismol. Res. Lett., 86, no. 1, doi: 10.1785/0220140104
 
# Goulet, C.A., Abrahamson, N.A., Somerville, P.G. and K, E. Wooddell (2015) The SCEC Broadband Platform Validation Exercise: Methodology for Code Validation in the Context of Seismic-Hazard Analyses, Seismol. Res. Lett., 86, no. 1, doi: 10.1785/0220140104
 
# Dreger, D. S., Beroza, G.C., Day, S. M., Goulet, C. A., Jordan, T. H., Spudich, P. A., and Stewart, J. P. (2015). Validation of the SCEC Broadband Platform V14.3 Simulation Methods Using Pseudospectral Acceleration Data, Seismol. Res. Lett., 86, no. 1, doi:10.1785/0220140118.
 
# Dreger, D. S., Beroza, G.C., Day, S. M., Goulet, C. A., Jordan, T. H., Spudich, P. A., and Stewart, J. P. (2015). Validation of the SCEC Broadband Platform V14.3 Simulation Methods Using Pseudospectral Acceleration Data, Seismol. Res. Lett., 86, no. 1, doi:10.1785/0220140118.
Line 76: Line 84:
 
# Song, S.G., Dalguer, L.A. and Mai, P.M. (2014) Pseudo-dynamic source modeling with 1-point and 2-point statistics of earthquake source parameters, Geophysical Journal International, 196, 1770-1786. doi: 10.1093/gji/ggt479
 
# Song, S.G., Dalguer, L.A. and Mai, P.M. (2014) Pseudo-dynamic source modeling with 1-point and 2-point statistics of earthquake source parameters, Geophysical Journal International, 196, 1770-1786. doi: 10.1093/gji/ggt479
  
Site response method by RWGraves based on this reference:
+
The site response method written by RWGraves, included in the BBP, is based on this reference:
 
#Stewart J.P., D.M. Boore, E. Seyhan, and G.M. Atkinson (2016). NGA-West2 equations for predicting vertical-component PGA, PGV, and 5%-damped PSA from shallow crustal earthquakes. Earthq. Spectra, 32 (2): 1005–1031.
 
#Stewart J.P., D.M. Boore, E. Seyhan, and G.M. Atkinson (2016). NGA-West2 equations for predicting vertical-component PGA, PGV, and 5%-damped PSA from shallow crustal earthquakes. Earthq. Spectra, 32 (2): 1005–1031.
  
 
== Related Entries ==
 
== Related Entries ==
 
*[http://scec.usc.edu/scecpedia SCEC/CME Project]
 
*[http://scec.usc.edu/scecpedia SCEC/CME Project]

Latest revision as of 18:43, 23 September 2022

Fig 1: Broadband Platform showing ground motion simulation methods (blue circles), and optional post-processing methods (green circles).

The Southern California Earthquake Center (SCEC) Broadband Platform (BBP) is a software system that can generate 0-20+ Hz seismograms for historical and scenario earthquakes in California, Eastern North America, and Japan using several alternative computational methods.

Current Release

The current release of the SCEC Broadband Platform software is available for download from:

This version was released in May 2022. BBP v22.4 includes several new capabilities. Details of the new features and capabilities of BBP v22.4 are described in the BBP v22.4 release notes. We recommend that all new users work with BBP v22.4 because this version adds new capabilities and improvements to the methods provided in earlier releases of the Broadband Platform. We recommend existing Broadband platform users migrate to BBP v22.4 whenever possible. Previous versions of the Broadband Platform will remain available for users that want to reproduce results produced with earlier versions of the Platform. Please review the BBP installation instructions for details on how to download and install BBP v22.4 on your local computer.

Overview

The goal of the SCEC Broadband Simulation Platform is to generate broadband (0-20+ Hz) ground motions for earthquakes. The SCEC Broadband Platform is a collaborative software development project involving SCEC researchers, research engineers, graduate students, and the SCEC/CME software development group. SCEC scientific groups have contributed modules to the Broadband Platform including kinematic rupture generation, low- and high-frequency seismogram synthesis using 3D wave propagation through 1D layered velocity structures, non-linear site effects, ground motion intensity measure calculations, and visualization. These complex scientific codes have been integrated into a system that supports easy on-demand computation of broadband seismograms, providing user-defined, repeatable calculation of ground-motion seismograms, using alternative simulation methods, and software utilities to generate tables, plots, and maps. The SCEC Broadband Platform is designed to be used by both scientific and engineering researchers with some experience interpreting ground motion simulations.

Users may calculate broadband seismograms for both historical earthquakes (validation events including Northridge, Loma Prieta, etc.) and user-defined earthquakes. The platform produces a variety of data products, including broadband seismograms, rupture visualizations, and several goodness-of-fit plots. When running a validation event, users supply their own simple source description, or provide a rupture description in SRF format. Users may specify their own list of stations or use a provided list.

The SCEC BBP software can be compiled and run on recent Linux systems with GNU compilers. The Broadband Platform continues to evolve, and new versions of the BBP are released periodically on GitHub. The latest release includes seven simulation methods, eight simulation regions covering California, Japan, Eastern North America, and the ability to compare simulation results against empirical ground motion models. The newest features include the ability to simulate multi-segment ruptures using several simulation methods. And, in addition to a new simulation method, it now includes improvements to several existing ground motion simulation methods and revised Green’s functions for all simulation regions. In this release, the site response module is integrated with all simulation methods and can also be used for comparing simulated data against historical earthquakes

The Broadband Platform is open-source software that is made available under the terms of the BSD-3 License. A copy of the License can be found with the software in the 'LICENSE' file in the GitHub repository.

Technical Support

For assistance with the Broadband Platform, you may

  • Email software @ scec.org with specific questions
  • Browse and submit new trouble tickets, or feature requests, at Broadband Issues Page.

Broadband Platform Developers and Collaborators

Broadband Publications

Supporting Presentation Materials

Frequently Asked Questions (FAQ)

We post BBP user questions and our response to a Broadband Platform Frequently Asked Questions (FAQ) page:

Related Wiki Entries

Older Broadband Platform Releases

Earlier version of the broadband platform software and data distributions are provided to support existing Broadband platform users. However, we recommend all users upgrade to the most recent version at first opportunity. Earlier releases can be found in the Broadband Platform Previous Releases page.

Acknowledging

Please support the Broadband Platform project by acknowledging the use of this software in your presentations and publications. Acknowledgements and citations help us obtain additional resources for continued development of the platform. If you use the Broadband Platform software for work resulting in an academic publication, we would appreciate it if one, or more, of the following paper is cited.

The primary reference for the Broadband Platform software system is:

  1. Maechling, P. J., F. Silva, S. Callaghan, and T. H. Jordan (2015). SCEC Broadband Platform: System Architecture and Software Implementation, Seismol. Res. Lett., 86, no. 1, doi: 10.1785/0220140125.

References for specific computational methods included in the Broadband Platform and for the validation procedures developed by the Broadband Platform include:

  1. Goulet, C.A., Abrahamson, N.A., Somerville, P.G. and K, E. Wooddell (2015) The SCEC Broadband Platform Validation Exercise: Methodology for Code Validation in the Context of Seismic-Hazard Analyses, Seismol. Res. Lett., 86, no. 1, doi: 10.1785/0220140104
  2. Dreger, D. S., Beroza, G.C., Day, S. M., Goulet, C. A., Jordan, T. H., Spudich, P. A., and Stewart, J. P. (2015). Validation of the SCEC Broadband Platform V14.3 Simulation Methods Using Pseudospectral Acceleration Data, Seismol. Res. Lett., 86, no. 1, doi:10.1785/0220140118.
  3. Anderson, J. G (2015) The Composite Source Model for Broadband Simulations of Strong Ground Motions Seismological Research Letters, January/February 2015, v. 86, p. 68-74, First published on December 17, 2014, doi:10.1785/0220140098
  4. Atkinson, G. M., and Assatourians, K. (2015) Implementation and Validation of EXSIM (A Stochastic Finite‐Fault Ground‐Motion Simulation Algorithm) on the SCEC Broadband Platform Seismological Research Letters, January/February 2015, v. 86, p. 48-60, First published on December 17, 2014, doi:10.1785/0220140097
  5. Crempien, J. G. F., and Archuleta, R. J. (2015) UCSB Method for Simulation of Broadband Ground Motion from Kinematic Earthquake Sources Seismological Research Letters, January/February 2015, v. 86, p. 61-67, First published on December 17, 2014, doi:10.1785/0220140103
  6. Dreger, D. S., and Jordan, T. H. (2015) Introduction to the Focus Section on Validation of the SCEC Broadband Platform V14.3 Simulation Methods Seismological Research Letters, January/February 2015, v. 86, p. 15-16, doi:10.1785/0220140233
  7. Graves, R., and Pitarka, A. (2015) Refinements to the Graves and Pitarka (2010) Broadband Ground‐Motion Simulation Method Seismological Research Letters, January/February 2015, v. 86, p. 75-80, First published on December 17, 2014, doi:10.1785/0220140101
  8. Olsen, K. B., and Takedatsu, R. (2015) The SDSU Broadband Ground‐Motion Generation Module BBtoolbox Version 1.5 Seismological Research Letters, January/February 2015, v. 86, p. 81-88, First published on December 17, 2014, doi:10.1785/0220140102
  9. Song, S.G. (2016) Developing a generalized pseudo-dynamic source model of Mw 6.5-7.0 to simulate strong ground motions, Geophysical Journal International, 204, 1254-1265. doi: 10.1093/gji/ggv521
  10. Song, S.G., Dalguer, L.A. and Mai, P.M. (2014) Pseudo-dynamic source modeling with 1-point and 2-point statistics of earthquake source parameters, Geophysical Journal International, 196, 1770-1786. doi: 10.1093/gji/ggt479

The site response method written by RWGraves, included in the BBP, is based on this reference:

  1. Stewart J.P., D.M. Boore, E. Seyhan, and G.M. Atkinson (2016). NGA-West2 equations for predicting vertical-component PGA, PGV, and 5%-damped PSA from shallow crustal earthquakes. Earthq. Spectra, 32 (2): 1005–1031.

Related Entries