Difference between revisions of "Broadband Platform Upcoming Release"
Line 86: | Line 86: | ||
== Acknowledging == | == Acknowledging == | ||
− | + | If you use the Broadband Platform software in your research, you cite the following publication in any publications the result from your work with the software. Citations help us obtain resources for continued software development of the platform. | |
− | If you use the Broadband Platform, | ||
− | |||
− | |||
# Philip J. Maechling, Fabio Silva, Scott Callaghan, and Thomas H. Jordan (2015) SCEC Broadband Platform: System Architecture and Software Implementation Seismological Research Letters, January/February 2015, v. 86, p. 27-38, First published on December 17, 2014, doi:10.1785/0220140125 | # Philip J. Maechling, Fabio Silva, Scott Callaghan, and Thomas H. Jordan (2015) SCEC Broadband Platform: System Architecture and Software Implementation Seismological Research Letters, January/February 2015, v. 86, p. 27-38, First published on December 17, 2014, doi:10.1785/0220140125 | ||
− | + | If your research results make use of specific computational methods within the Broadband Platform, or apply the verification and validation methods developed by the Broadband Platform working group, please cite one or more of the following papers. | |
# Anderson, J. G (2015) The Composite Source Model for Broadband Simulations of Strong Ground Motions Seismological Research Letters, January/February 2015, v. 86, p. 68-74, First published on December 17, 2014, doi:10.1785/0220140098 | # Anderson, J. G (2015) The Composite Source Model for Broadband Simulations of Strong Ground Motions Seismological Research Letters, January/February 2015, v. 86, p. 68-74, First published on December 17, 2014, doi:10.1785/0220140098 | ||
# Atkinson, G. M., and Assatourians, K. (2015) Implementation and Validation of EXSIM (A Stochastic Finite‐Fault Ground‐Motion Simulation Algorithm) on the SCEC Broadband Platform Seismological Research Letters, January/February 2015, v. 86, p. 48-60, First published on December 17, 2014, doi:10.1785/0220140097 | # Atkinson, G. M., and Assatourians, K. (2015) Implementation and Validation of EXSIM (A Stochastic Finite‐Fault Ground‐Motion Simulation Algorithm) on the SCEC Broadband Platform Seismological Research Letters, January/February 2015, v. 86, p. 48-60, First published on December 17, 2014, doi:10.1785/0220140097 | ||
Line 102: | Line 99: | ||
#Graves, R. W. and A. Pitarka (2010). “Broadband Ground-Motion Simulation Using a Hybrid Approach.” Bull. Seis. Soc. Am., 100(5A), pp. 2095-2123, doi: 10.1785/0120100057. [http://hypocenter.usc.edu/research/broadband/documents/Graves_Pitarka_2010.pdf link] | #Graves, R. W. and A. Pitarka (2010). “Broadband Ground-Motion Simulation Using a Hybrid Approach.” Bull. Seis. Soc. Am., 100(5A), pp. 2095-2123, doi: 10.1785/0120100057. [http://hypocenter.usc.edu/research/broadband/documents/Graves_Pitarka_2010.pdf link] | ||
#Maechling, P. J., F. Silva, S. Callaghan, and T. H. Jordan (2015). SCEC Broadband Platform: System Architecture and Software Implementation, Seismol. Res. Lett., 86, no. 1, doi: 10.1785/0220140125. | #Maechling, P. J., F. Silva, S. Callaghan, and T. H. Jordan (2015). SCEC Broadband Platform: System Architecture and Software Implementation, Seismol. Res. Lett., 86, no. 1, doi: 10.1785/0220140125. | ||
+ | |||
#Mai, P.M., W. Imperatori, and K.B. Olsen (2010). “Hybrid broadband ground motion simulations: combining long-period deterministic synthetics with high frequency multiple S-to-S back-scattering.” Bull. Seis. Soc. Am., 100(5A), pp. 2124-2142, doi: 10.1785/0120080194. [http://hypocenter.usc.edu/research/broadband/documents/Mai_Imperatori_Olsen_2010.pdf link] | #Mai, P.M., W. Imperatori, and K.B. Olsen (2010). “Hybrid broadband ground motion simulations: combining long-period deterministic synthetics with high frequency multiple S-to-S back-scattering.” Bull. Seis. Soc. Am., 100(5A), pp. 2124-2142, doi: 10.1785/0120080194. [http://hypocenter.usc.edu/research/broadband/documents/Mai_Imperatori_Olsen_2010.pdf link] | ||
# Olsen, K. B., and Takedatsu, R. (2015) The SDSU Broadband Ground‐Motion Generation Module BBtoolbox Version 1.5 Seismological Research Letters, January/February 2015, v. 86, p. 81-88, First published on December 17, 2014, doi:10.1785/0220140102 | # Olsen, K. B., and Takedatsu, R. (2015) The SDSU Broadband Ground‐Motion Generation Module BBtoolbox Version 1.5 Seismological Research Letters, January/February 2015, v. 86, p. 81-88, First published on December 17, 2014, doi:10.1785/0220140102 | ||
#Schmedes, J., R. J. Archuleta, and D. Lavallée (2010). “Correlation of earthquake source parameters inferred from dynamic rupture simulations.” J. Geophys. Res., 115, B03304, doi:10.1029/2009JB006689. [http://hypocenter.usc.edu/research/broadband/documents/Schmedes_Archuleta_Lavallee_2010.pdf link] | #Schmedes, J., R. J. Archuleta, and D. Lavallée (2010). “Correlation of earthquake source parameters inferred from dynamic rupture simulations.” J. Geophys. Res., 115, B03304, doi:10.1029/2009JB006689. [http://hypocenter.usc.edu/research/broadband/documents/Schmedes_Archuleta_Lavallee_2010.pdf link] |
Revision as of 03:25, 25 May 2016
The SCEC Broadband Platform is a software system that can generate 0-100 Hz seismograms for historical and scenario earthquakes in California, Eastern North America, and Japan using several alternative computational methods.
Contents
- 1 Overview
- 2 Current Release
- 3 Dependencies
- 4 Documentation Including Installation Instructions
- 5 Supporting Materials
- 6 Help
- 7 License
- 8 Broadband Platform Developers and Collaborators
- 9 Frequently Asked Questions (FAQ)
- 10 Related Wiki Entries
- 11 Older Broadband Platform Releases
- 12 Development version
- 13 Acknowledging
Overview
The goal of the SCEC Broadband Simulation Platform is to generate broadband (0-100 Hz) ground motions for earthquakes. The SCEC Broadband Platform is a collaborative software development project involving SCEC researchers, research engineers, graduate students, and the SCEC/CME software development group. SCEC scientific groups have contributed modules to the Broadband Platform including rupture generation, low- and high-frequency seismogram synthesis, non-linear site effects, and visualization. These complex scientific codes have been integrated into a system that supports easy on-demand computation of broadband seismograms. The SCEC Broadband Platform is designed to be used by both scientific and engineering researchers with some experience interpreting ground motion simulations.
Users may calculate broadband seismograms for both historical earthquakes (validation events including Northridge and Loma Prieta) and user-defined earthquakes. The platform produces a variety of data products, including broadband seismograms, rupture visualizations, and several goodness-of-fit plots. Users can install the platform on their own machine, verify that it is installed correctly, and run their own simulations on demand without requiring knowledge of any of the code involved. Users may run a validation event, supply their own simple source description, or provide a rupture description in SRF format. Users may specify their own list of stations or use a provided list. Currently the platform supports stations and events in Southern California, the Bay Area, the Mojave Desert, Eastern United States, Eastern Canada, Central and Western Japan. Users may select among various method that include rupture generation, low-frequency synthesis, high-frequency synthesis, and incorporation of site effects, with the option of running a goodness-of-fit comparison against observed or simulated seismograms. These codes have been validated against recorded ground motions from real events.
The Broadband Platform software development is performed using modern software engineering practices, including version control, user documentation, acceptance tests, and formal releases, with the aim of accuracy, reliability, ease of installation and use.
Current Release
The current official release of Broadband Platform is v16.5.0. This is a new version of the platform that includes several new capabilities. It is the first major release of the Broadband Platform since version 15.3.0, released in March 2015. Details of the new features along with several bugs fixes are provided in the release notes. New Broadband Platform users should work with this version of the software. We recommend existing Broadband platform users migrate to this new version whenever possible.
Dependencies
Broadband has the following dependencies:
Please refer to the Broadband User Guide v16.5.0 for more details about the specific versions required for each of the packages above. This version of the Broadband Platform does NOT require Intel compilers.
Documentation Including Installation Instructions
User Guide Wiki (includes installation instructions):
- Broadband_Platform_Manual_Installation_16_5_0
- Broadband User Guide v16.5.0
- Broadband v16.5.0 Release Notes
- Broadband File Format Guide
- Broadband Data Products
Supporting Materials
- Broadband Poster from SSA 2016 (PDF, 14MB)
- Broadband overview talk from SC10 (PPT, 3.7 MB)
- Technical diagrams of Broadband module relationships (PPTX, 16 KB)
Help
For assistance with the Broadband Platform, you may
- Email software @ scec.org with specific questions
- Browse and submit new trouble tickets, or feature requests, at Broadband Trac site. SCEC user login is required to submit trouble tickets this way.
License
SCEC Broadband Platform software distributions are released under an Apache 2.0 open-source license as described here Broadband License.
Broadband Platform Developers and Collaborators
- Pacific Earthquake Engineering Research Center
- San Diego State University Dept of Geological Sciences
- SCEC
- SCEC/CME Project
- ETH Zurich - Swiss Federal Institute of Technology Zurich
- University of California, Berkeley
- U.C. Santa Barbara Dept of Earth Sciences
- UCSB Institute for Crustal Studies
- University of Nevada Reno
- University of Western Ontario
- URS Corporation
- AECOM / URS
Frequently Asked Questions (FAQ)
We post BBP user questions and our response to a Broadband Platform Frequently Asked Questions (FAQ) page:
Related Wiki Entries
Older Broadband Platform Releases
Earlier version of the broadband platform software and data distributions are provided to support existing Broadband platform users. However, we recommend all users upgrade to the most recent version at first opportunity. Earlier releases can be found in the Broadband Platform Previous Releases page.
Development version
If you're an advanced user, interested in working with the latest development version of the platform, you can check it out from
svn co https://source.usc.edu/svn/broadband/trunk
Details about working with the development version are provided in the User Guide.
The next version of Broadband is expected to be released in Q3 of 2016.
Acknowledging
If you use the Broadband Platform software in your research, you cite the following publication in any publications the result from your work with the software. Citations help us obtain resources for continued software development of the platform.
- Philip J. Maechling, Fabio Silva, Scott Callaghan, and Thomas H. Jordan (2015) SCEC Broadband Platform: System Architecture and Software Implementation Seismological Research Letters, January/February 2015, v. 86, p. 27-38, First published on December 17, 2014, doi:10.1785/0220140125
If your research results make use of specific computational methods within the Broadband Platform, or apply the verification and validation methods developed by the Broadband Platform working group, please cite one or more of the following papers.
- Anderson, J. G (2015) The Composite Source Model for Broadband Simulations of Strong Ground Motions Seismological Research Letters, January/February 2015, v. 86, p. 68-74, First published on December 17, 2014, doi:10.1785/0220140098
- Atkinson, G. M., and Assatourians, K. (2015) Implementation and Validation of EXSIM (A Stochastic Finite‐Fault Ground‐Motion Simulation Algorithm) on the SCEC Broadband Platform Seismological Research Letters, January/February 2015, v. 86, p. 48-60, First published on December 17, 2014, doi:10.1785/0220140097
- Crempien, J. G. F., and Archuleta, R. J. (2015) UCSB Method for Simulation of Broadband Ground Motion from Kinematic Earthquake Sources Seismological Research Letters, January/February 2015, v. 86, p. 61-67, First published on December 17, 2014, doi:10.1785/0220140103
- Dreger, D. S., Beroza, G.C., Day, S. M., Goulet, C. A., Jordan, T. H., Spudich, P. A., and Stewart, J. P. (2015). Validation of the SCEC Broadband Platform V14.3 Simulation Methods Using Pseudospectral Acceleration Data, Seismol. Res. Lett., 86, no. 1, doi:10.1785/0220140118.
- Dreger, D. S., and Jordan, T. H. (2015) Introduction to the Focus Section on Validation of the SCEC Broadband Platform V14.3 Simulation Methods Seismological Research Letters, January/February 2015, v. 86, p. 15-16, doi:10.1785/0220140233
- Goulet, C.A., Abrahamson, N.A., Somerville, P.G. and K, E. Wooddell (2015) The SCEC Broadband Platform Validation Exercise: Methodology for Code Validation in the Context of Seismic-Hazard Analyses, Seismol. Res. Lett., 86, no. 1, doi: 10.1785/0220140104
- Graves, R., and Pitarka, A. (2015) Refinements to the Graves and Pitarka (2010) Broadband Ground‐Motion Simulation Method Seismological Research Letters, January/February 2015, v. 86, p. 75-80, First published on December 17, 2014, doi:10.1785/0220140101
- Graves, R. W. and A. Pitarka (2010). “Broadband Ground-Motion Simulation Using a Hybrid Approach.” Bull. Seis. Soc. Am., 100(5A), pp. 2095-2123, doi: 10.1785/0120100057. link
- Maechling, P. J., F. Silva, S. Callaghan, and T. H. Jordan (2015). SCEC Broadband Platform: System Architecture and Software Implementation, Seismol. Res. Lett., 86, no. 1, doi: 10.1785/0220140125.
- Mai, P.M., W. Imperatori, and K.B. Olsen (2010). “Hybrid broadband ground motion simulations: combining long-period deterministic synthetics with high frequency multiple S-to-S back-scattering.” Bull. Seis. Soc. Am., 100(5A), pp. 2124-2142, doi: 10.1785/0120080194. link
- Olsen, K. B., and Takedatsu, R. (2015) The SDSU Broadband Ground‐Motion Generation Module BBtoolbox Version 1.5 Seismological Research Letters, January/February 2015, v. 86, p. 81-88, First published on December 17, 2014, doi:10.1785/0220140102
- Schmedes, J., R. J. Archuleta, and D. Lavallée (2010). “Correlation of earthquake source parameters inferred from dynamic rupture simulations.” J. Geophys. Res., 115, B03304, doi:10.1029/2009JB006689. link